61 research outputs found

    Multidimensional Modeling of Atmospheric Effects and Surface Heterogeneities on Remote Sensing

    Get PDF
    The overall goal of this project is to establish a modeling capability that allows a quantitative determination of atmospheric effects on remote sensing including the effects of surface heterogeneities. This includes an improved understanding of aerosol and haze effects in connection with structural, angular, and spatial surface heterogeneities. One important objective of the research is the possible identification of intrinsic surface or canopy characteristics that might be invariant to atmospheric perturbations so that they could be used for scene identification. Conversely, an equally important objective is to find a correction algorithm for atmospheric effects in satellite-sensed surface reflectances. The technical approach is centered around a systematic model and code development effort based on existing, highly advanced computer codes that were originally developed for nuclear radiation shielding applications. Computational techniques for the numerical solution of the radiative transfer equation are adapted on the basis of the discrete-ordinates finite-element method which proved highly successful for one and two-dimensional radiative transfer problems with fully resolved angular representation of the radiation field

    Multiple scattering of laser beams in dense hydrosols

    Get PDF
    The multiple scattering of laser beams is usually described within the framework of small-angle scattering theory. The validity of this approximation as well as improvements due to the incorporation of diffusion theory in the calculations were studied

    Adiabatic invariants and Mixmaster catastrophes

    Get PDF
    We present a rigorous analysis of the role and uses of the adiabatic invariant in the Mixmaster dynamical system. We propose a new invariant for the global dynamics which in some respects has an improved behaviour over the commonly used one. We illustrate its behaviour in a number of numerical results. We also present a new formulation of the dynamics via Catastrophe Theory. We find that the change from one era to the next corresponds to a fold catastrophe, during the Kasner shifts the potential is an Implicit Function Form whereas, as the anisotropy dissipates, the Mixmaster potential must become a Morse 0--saddle. We compare and contrast our results to many known works on the Mixmaster problem and indicate how extensions could be achieved. Further exploitation of this formulation may lead to a clearer understanding of the global Mixmaster dynamics.Comment: 24 pages, LaTeX, 5 figures (which can be obtained by sending a message to the first author), submitted to Phys.Rev.

    Numerical Approaches to Spacetime Singularities

    Get PDF
    This Living Review updates a previous version which its itself an update of a review article. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.Comment: 51 pages, 6 figures may be found in online version: Living Rev. Relativity 2002-1 at www.livingreviews.or

    The RCSB Protein Data Bank: redesigned web site and web services

    Get PDF
    The RCSB Protein Data Bank (RCSB PDB) web site (http://www.pdb.org) has been redesigned to increase usability and to cater to a larger and more diverse user base. This article describes key enhancements and new features that fall into the following categories: (i) query and analysis tools for chemical structure searching, query refinement, tabulation and export of query results; (ii) web site customization and new structure alerts; (iii) pair-wise and representative protein structure alignments; (iv) visualization of large assemblies; (v) integration of structural data with the open access literature and binding affinity data; and (vi) web services and web widgets to facilitate integration of PDB data and tools with other resources. These improvements enable a range of new possibilities to analyze and understand structure data. The next generation of the RCSB PDB web site, as described here, provides a rich resource for research and education
    corecore